YILDIZ TECHNICAL UNIVERSITY NAVAL ARCHITECTURE AND WARITIWE FACULTY DEPARTIVIENT OF NAVAL ARCHITECTURE AND WARINE ENGINEERING BSc. GRADUATE THESIS

140A1006 Yunus Emre KOÇAK Adviser : Dr. Bekir ŞENER

DESIGN OF MOTORYACHT SERIES IN 24M, 21M, 18M

Aims of the Thesis

The decision process in yacht design includes a number of parameters such as yacht type, characteristics, marine conditions, capacity, changing competition and market conditions of the commercial or private working areas preferred by the yacht owner.

The project aims to create a conceptual design by considering these parameters.

Calculations and Plans for Reference (24 M Motor Yacht)

Draft = 0.000 m Displacement = 0.000 t

Tank Name	Total Mass tonne	Total Volume m^3	Specific Gravity	Fluid Type	Long. Arm m	Trans. Arm	Vert. Arm m
Fuel Tank PS_01	1,643	1,955	0,84	Diesel	9,423	-0,671	0,51
Fuel Tank SB_01	1,643	1,955	0,84	Diesel	9,423	0,671	0,51
Fuel Tank PS_02	2,061	0,614	0,84	Diesel	15,493	-0,574	0,462
Fuel Tank SB_02	2,061	0,614	0,84	Diesel	15,493	0,574	0,462
Sewage Water PS	0,561	0,885	0,913	Slops	17,934	-0,44	0,474
Gray Water SB	0,561	0,885	0,913	Slops	17,934	0,44	0,474
Fresh Water SB	0,885	2,454	1	Fresh Water	12,734	-0,67	0,467
Fresh Water SB	0,885	2,454	1	Fresh Water	12,734	0,67	0,467

Loadcase 1 – Departure (Fuels, Fresh Water Full)

Disp:66.20 t, Tamid: 1,295 m, Trim: -0,144 m, Heel: -0,4 deg (stbd)

		Loadcase - Departure	
	1	Draft Amidships m	1,306
	2	Displacement t	67,32
	3	Heel deg	-0,4
l	4	Draft at FP m	1,395
l	5	Draft at AP m	1,216
l	6	Draft at LCF m	1,302
l	7	Trim (+ve by stern) m	-0,18
	8	WL Length m	22,25
	9	Beam max extents on WL m	6,176
	10	Wetted Area m^2	120,3
	11	Waterpl. Area m^2	109,6
	12	Prismatic coeff. (Cp)	0,644
	13	Block coeff. (Cb)	0,356
	14	Max Sect. area coeff. (Cm)	0,585
	15	Waterpl. area coeff. (Cwp)	0,797
	16	LCB from zero pt. (+ve fwd) m	11,74
	17	LCF from zero pt. (+ve fwd) m	10,6
	18	KB m	0,907
	19	KG solid m	2,682
	20	BMt m	4,003
	21	BML m	53,16
l	22	GMt corrected m	2,228
l	23	GML m	51,39
l	24	KMt m	4,91
l	25	KML m	54,07
l	26	Immersion (TPc) tonne/cm	1,123
	27	MTc tonne.m	1,561
	28	RM at 1deg = GMt.Disp.sin(1) tonne.m	2,618
	29	Max deck inclination deg	0,584
	30	Trim angle (+ve by stern) deg	-0,46

Loadcase 2 – Arrival (Gray Water, Black Water Full)

Disp:58.14 t, Tamid: 1,219 m, Trim: -0,056 m, Heel: -0,5 deg (stbd)

	Loadcase - Arrival	
1	Draft Amidships m	1,306
2	Displacement t	67,32
3	Heel deg	-0,4
4	Draft at FP m	1,395
5	Draft at AP m	1,216
6	Draft at LCF m	1,302
7	Trim (+ve by stern) m	-0,18
8	WL Length m	22,25
9	Beam max extents on WL m	6,176
10	Wetted Area m^2	120,3
11	Waterpl. Area m^2	109,6
12	Prismatic coeff. (Cp)	0,644
13	Block coeff. (Cb)	0,356
14	Max Sect. area coeff. (Cm)	0,585
15	Waterpl. area coeff. (Cwp)	0,797
16	LCB from zero pt. (+ve fwd) m	11,74
17	LCF from zero pt. (+ve fwd) m	10,6
18	KB m	0,907
19	KG solid m	2,682
20	BMt m	4,003
21	BML m	53,16
22	GMt corrected m	2,228
23	GML m	51,39
24	KMt m	4,91
25	KML m	54,07
26	Immersion (TPc) tonne/cm	1,123
27	MTc tonne.m	1,561
28	RM at 1deg = GMt.Disp.sin(1) tonne.m	2,618
29	Max deck inclination deg	0,584
30	Trim angle (+ve by stern) deg	-0,46

	C	3.1	ı 1.2.4: Initial	GMt GM	1 at 0,0 de	eg = 1,79	9 m								3.1.2.4: Ini 3.1.2.5: Pa 3.1.2.6: Tu 3.2.2: Sev 3.2.2: Sev	assenger Irn: angle ere wind a ere wind a	crowding: of equilib and rolling and rolling	angle of rium Wind He Wind He	equilibriu eling (ste	ady)				
			ì		M	x GZ =		at 44,5 de		and tollin	na Wind H	laolina (a	uret)		Max GZ = I	0,654 m a	t 44,5 deg	J.	0.000					
),6	1 /			322	1	3.2.2. Sev				senud 15	NSUII.											
).3	/				1																	
			V 3.1.2.5	: Passe	nger craw	ප්ථාරු නි ගල	te efieteu	i dibeniumi li bri	um															
	E	0	4																					
	259),3	i i																					
	-0),6				ļ			\-															
			0	- 1		l			1				1											
)) 	1									1											
	-(),9	i)																					
			ì			ļ																		
	-1	,2	1			}	}				/		1-1-											
			ì							l	1													
	21	1,5) 			<u> </u>																		
			i i																					
			i	ĺ						ĺ			1											
	F1	,8 -25	b .	25	į	0	75		00	125	1	50	175											
	G7 =	0,017 m	Heel to St	arboard	= 0.000		Starboa	ra aeg. from zero	hool) =	U U3U34	m dea													
	Heel to Starboard deg	0,017 111	-30,0			0,0	10,0		30,0	40,0	50,0	60,0	70,0	80,0	90,0	100,0	110,0	120,0	130,0	140,0	150,0	160,0	170,0	180,0
	GZ m		05000000000	-0,51		Description 1		0,545	0.01.050.00	120000000000000000000000000000000000000	10000180101-			0.554.700									-1,16	
2	Area under GZ curve from zero	heel m.deg	11,29	5,65	1,467	0,03	1,799	6,298	12,26	18,7	25,22	31,51	37,18	41,43	43,27	42,18	37,97	30,68	20,62	8,166	-6,2	-21,5	-35,5	-41,9
3	Displacement t		58,14	58,14	58,14	58,15	58,14	58,14	58,14	58,14	58,14	58,14	58,14	58,14	58,14	58,14	58,14	58,14	58,14	58,14	58,14	58,14	58,14	58,14
4	Draft at FP m		0,889	1,091	1,211	1,247	1,211	1,091	0,889	0,582	0,08	-0,95	-3,27	-10,3	n/a	-17,7	-10,6	-8,2	-6,99	-6,26	-5,78	-5,44	-5,25	-5,2
5	Draft at AP m		0,52	0,861	1,091	1,191	1,091	0,861	0,52	0,012	-0,78	-2,08	-4,58	-11,7	n/a	-16	-8,83	-6,36	-5,06	-4,26	-3,73	-3,37	-3,18	-3,16
	WL Length m		200000000000000000000000000000000000000	A COLUMN TOWNS	22,07	30003-00-000	198030118 13001	550500 E100000		1777-1036 - 177-1	2555.00 * 30350	The state of the s	100000	30/300 * 000000	1860A-CO* 17700000	100,000 Pt. 2000.00	700 700 00 Page 1500 00	75.055.07 * 733393345	200 00000000000000000000000000000000000	A C. Dillo. Replace		1 1000 Per 101-100	100000000	110000
7	Beam max extents on WL m		5,083	5,322	5,828	5,932	5,828	5,322	5,083	5,099	5,205	5,236	4,975	4,542	4,278	4,143	4,118	4,201	4,341	4,386	4,768	5,733	7,289	7,179
1.0000	Wetted Area m^2		100000000000000000000000000000000000000		113,8										98,16	500000 * 110000 *	**************************************	V			190,000,000	13.00.000.000.000	131,9	10.000.00.00
2-779	Waterpl. Area m^2				103,1																			
200000	Prismatic coeff. (Cp)				0,636																			
	Block coeff. (Cb)		100		0,381																			
2000	LCB from zero pt. (+ve fwd) m				11,61																			
	LCF from zero pt. (+ve fwd) m		11,21		10,55										11,57									
-	Max deck inclination deg Trim angle (+ve by stern) deg		30,01		-0,31	0,145		20,01					70						110000000000000000000000000000000000000	1-10-0-1		15.000000000000000000000000000000000000	168,7	100000 00000

Floodable Length Graph and Bulkhead Locations

IMO Criteria

	IMO CRITERIA					
	3.1.2.1: Area 0 to 30			Pass		
	from the greater of					
A 740/49) Ch2 Davies situation	spec. heel angle	0	deg	0		
A.749(18) Ch3 - Design criteria applicable to all ships	to the lesser of					
applicable to all ships	spec. heel angle	30	deg	30		
	angle of vanishing stability	102	deg			
	shall not be less than (>=)	3,1513	m.deg	14,6733	Pass	365,63
	3.1.2.1: Area 0 to 40				Pass	
	from the greater of					
	spec. heel angle	0	deg	0		
A.749(18) Ch3 - Design criteria						
applicable to all ships	spec. heel angle	40	deg	40		
	first downflooding angle	n/a	deg			
	angle of vanishing stability	102	deg			
	shall not be less than (>=)	5,1566	m.deg	22,7816	Pass	341,79
	3.1.2.1: Area 30 to 40				Pass	
	from the greater of					
	spec. heel angle	30	deg	30		
A.749(18) Ch3 - Design criteria	to the lesser of					
applicable to all ships	spec. heel angle	40	deg	40		
	first downflooding angle	n/a	deg			
	angle of vanishing stability	102	deg			
	shall not be less than (>=)	1,7189	m.deg	8,1083	Pass	371,71
	3.1.2.2: Max GZ at 30 or greater				Pass	
	in the range from the greater of					
	spec. heel angle	30	deg	30		
A.749(18) Ch3 - Design criteria	to the lesser of					
applicable to all ships	spec. heel angle	90	deg			
applicable to all ships	angle of max. GZ	59,1	deg	59,1		
	shall not be less than (>=)	0,2	m	0,912	Pass	356
	Intermediate values					
	angle at which this GZ occurs		deg	59,1		
A.749(18) Ch3 - Design criteria	3.1.2.3: Angle of maximum GZ				Pass	
applicable to all ships	shall not be less than (>=)	25	deg	59,1	Pass	136,36
A.749(18) Ch3 - Design criteria	3.1.2.4: Initial GMt				Pass	
applicable to all ships	spec, heel angle	0	deg			
applicable to all ships	shall not be less than (>=)	0,15	m	2,228	Pass	1385,33
	3.1.2.5: Passenger crowding: angle of equilibrium				Pass	
	Pass. crowding arm = nPass M / disp. D cos^n(phi)					
	number of passengers: nPass =	0				
A.749(18) Ch3 - Design criteria	passenger mass: M =	0,075	tonne			
applicable to all ships	distance from centre line: D =	0	m			
applicable to all ships	cosine power: n =	0				
	shall not be greater than (<=)	10	deg	-0,4	Pass	103,51
	Intermediate values					
	Heel arm amplitude		m	0		
	3.1.2.6: Turn: angle of equilibrium				Pass	
	Turn arm: a v^2 / (R g) h cos^n(phi)					
	constant: a =	0,9996				
	vessel speed: v =	0	kn			
	turn radius, R, as percentage of Lwl	510				
applicable to all ships	h = KG - mean draft / 2	2,029	m			
	cosine power: n =	0				
	shall not be greater than (<=)	10	deg	-0,4	Pass	103,51
	Intermediate values					
	Heel arm amplitude		m	0		

Resistance – Speed Graph

Power – Speed Graph

SUMMARY

Comparision about main properties of 24 M, 21 M, 18 M

CONCLUSION

Boats of different sizes but with the same concept are designed for different budgets. In order to be preferable in terms of ergonomics and economics, the general layout of the 24 m motor yacht, which is taken as a reference, has been rearranged for 21 meters and 18 meters. A good step has been taken for the accessibility of motoryachts, one of the main objectives.

Comparision Between GA's

CONCLUSION

Boats of different sizes but with the same concept are designed for different budgets. In order to be preferable in terms of ergonomics and economics, the general layout of the 24 m motor yacht, which is taken as a reference, has been rearranged for 21 meters and 18 meters. A good step has been taken for the accessibility of motoryachts, one of the main objectives.

Thanks For Listening